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We present a numerical investigation of the flow between corotating disks with a
stationary outer casing – the enclosed corotating disk pair configuration. It is known
that in such a geometry, axisymmetric and three-dimensional flow regimes develop
depending on the value of the rotation rate. The three-dimensional flow is always
unsteady owing to its wavy structure in the radial-tangential plane. Axisymmetric
regimes exhibit first a pitchfork bifurcation, characterized by a symmetry breaking
with respect to the inter-disk midplane, before a Hopf bifurcation is established.
The regime diagrams for these bifurcations are given in the (Re, G)-plane, where
Re(=Ωb2/ν) is the rotational Reynolds number and G(= s/(b−a)) is the gap ratio. For
values of G smaller than a critical limit Gc ∼ 0.26, there exists a range of rotation rates
where the motion becomes time-dependent before bifurcating to a steady symmetry
breaking regime. It is shown that for G > Gc the transition to unsteady three-
dimensional flow occurs after the pitchfork bifurcation, and the flow structure is
characterized by a shift-and-reflect symmetry. The transition to three-dimensional
flow is consistent with experimental observations made by Abrahamson et al. (1989)
where multiple solutions develop (known as the intransitivity phenomenon) with the
presence of quasi-periodic behaviour resulting from successive vortex pairings. On
the other hand, for smaller values of gap ratio, the three-dimensional flow shows
a symmetry breaking. Finally, it is found that the variation of torque coefficient as
a function of the rotation rate is the same for both the axisymmetric and three-
dimensional solutions.

1. Introduction
The enclosed corotating disk pair (ECDP) configuration is formed (as illustrated in

figure 1) by two corotating disks delimited by an inner cylinder, the hub, corotating
with the disks and an outer, stationary casing. Applications include mainly computer
disk storage systems and disk cavities in turbomachinery. The geometry considered
here is characterized by a large hub radius ratio: a/b > 0.5, where a and b are the
inner and outer radius. The present numerical study is concerned with the spatio-
temporal behaviour of the flow developing during the different bifurcations observed
in such configurations, and in particular with the transition to three-dimensional flow.

Previous numerical work related to the ECDP configuration (Herrero, Giralt &
Humphrey 1995) has reported that the transition to three-dimensional flow occurs
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Figure 1. Schematic diagram of the ECDP section with relevant dimensions and definition of the
five regions in the (r, z)-plane (based on Schuler et al. 1990).

with unsteady motion, induced by wavy structures in the radial-tangential plane, with
a drift ranging between 0.5 and 0.8 of the angular velocity of the disks (Herrero et
al. 1999). Similar behaviour has been observed during the development of baroclinic
waves in a differentially heated rotating annulus (Fowlis & Hide 1965; Hignett et
al. 1985). In the case of baroclinic flows, the wave patterns are characterized by a
‘jet-stream’ moving between cyclonic and anticyclonic vortices, with a characteristic
meandering structure occupying the whole cavity. In the present case, the vortices are
restricted to a region located close to the stationary outer cylinder, while the inner
region is mainly governed by the Taylor–Proudman theorem (solid-body rotation).
Moreover, previous workers have reported that the number of structures decreases in
a stepwise manner with increasing rotation rate, whereas for the baroclinic waves, it
increases with the rotation rate.

Abrahamson, Eaton & Koga (1989) used flow visualization to show the vortical
structures for an ECDP with small gap ratio, 0.026 6 G 6 0.2, with radius ratio
a/b = 0.5. They considered water as the working fluid for a range of rotational
Reynolds number 1.5× 105 6 Re = Ωb2/ν 6 1.5× 106. They observed three distinct
regions: an inner region characterized by solid-body rotation near the hub, an outer
region (core) dominated by large counter-rotating vortices and the shroud boundary
layer. They showed, in particular, the polygonal shape of the boundary separating the
inner region from the outer region, resulting from the presence of the outer vortices.
From their experiments in a configuration formed by two corotating coaxial disks,
for a range of gap ratio 0.08 6 S = s/b 6 1.28, Akhmetov & Tarasov (1987) reported
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that when a critical Reynolds number is exceeded, the limit of the inner region takes
on the form of an oval, triangle, quadrangle, etc. When varying the rotation rate
for G = 0.1, Abrahamson et al. (1989) obtained the successive occurrence of three
regimes: indeterminate characterized by different pairings of vortices, alternating
vortex states and finally stable vortices. For the second regime, the flow structure
alternately exhibited different states under the same physical conditions, known as
the intransitivity phenomenon (Fowlis & Hide 1965; Hignett et al. 1985), although
the flow became more stable than for the first regime. Abrahamson et al. (1989) found
that the number of structures in the outer region decreased in a stepwise manner,
and the level of relative motion in the inner region increased. They also mentioned
the presence of vortical structures in the inner region at high rotation rates and large
axial separation.

In experiments with air, Schuler et al. (1990) delineated, in a fixed geometry with
G = 0.196 and a/b = 0.537, five distinct flow regions (see figure 1) for large values of
the rotation rate, 2.22× 104 6 Re 6 2.66× 105: the region near the hub in solid-body
rotation (denoted region IV), the boundary layer close to the fixed shroud (region I),
the inviscid core (region II) characterized by negligible gradients in the radial and
axial directions, region III corresponding to the transition between region II and IV,
and the Ekman layers along the two disks (region V). The core region is composed of
two separate zones in the meridional plane, which may or may not exhibit symmetry
with respect to the inter-disk midplane. Region III (visualized by Abrahamson et al.
(1989) as a polygon in the (r, φ)-plane, see also Humphrey & Gor (1993)) constitutes
a detached shear layer, resulting from the meeting of the three-dimensional vortical
structures in region II with the two-dimensional flow in region IV (which satisfies the
Taylor–Proudman theorem). This separation is found to act like a compliant surface,
owing to the solid-body rotation of the inner region (Schuler et al. 1990; Humphrey
& Gor 1993). Humphrey & Gor (1993) provided quantitative data for the radial
location and thickness of this region from experiments.

Humphrey, Schuler & Webster (1995) carried out numerical studies using finite-
difference approximations for the configuration considered by Schuler et al. (1990).
They found that the number of vortices in region II appeared to be an even integer,
because the wavelength of the tangential velocity component, responsible for the nodal
distribution of axial vorticity, is twice that for the axial velocity component. Using an
improved version of this method and using a refined grid, Iglesias & Humphrey (1998)
obtained three-dimensional solutions showing a symmetry breaking with respect to the
inter-disk midplane, in addition to the shift-and-reflect symmetry structure observed by
Humphrey et al. (1995) when considering different aspect ratios. In recent studies using
the same numerical formulation, Herrero, Giralt & Humphrey (1999) reported the
effect of gap ratio on two-dimensional–three-dimensional transition. They produced
a regime diagram showing the existence of two different families of unsteady three-
dimensional flow: (a) for sufficiently large values of G, a three-dimensional flow
that is asymmetric with respect to the inter-disk midplane (denoted regime III);
(b) for smaller gap ratio, a three-dimensional flow that displays shift-and-reflect
symmetry with respect to the inter-disk midplane (regime II). Both families of flows
are characterized by distinct behaviour in frequency/wavelength transitions. However,
the second family develops for a range of rotation rates before bifurcating to the first
one. Herrero et al. (1999) also found that regime III is characterized by the polygonal
boundary of region II, as visualized by Abrahamson et al. (1989).

Experimental and computational studies for a large value of gap ratio (G = 0.6)
and at high rotation rates have been carried out at the University of Bath (Gan et al.
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1996; Mirzaee, Wilson & Owen 1997; Lewis, Rees & Wilson 1998). Gan et al. (1996)
identified a Rankine (combined free and forced) vortex structure for the measured
flow (see also Owen & Rogers 1995).

In the present work, the effect of rotation rate on the different flow regimes is
analysed for different gap ratios 0.1 6 G 6 0.6. The present study complements
the numerical work carried out for smaller gap ratio by Herrero et al. (1999). The
curvature parameter Rc = (b + a)/(b − a) was kept at Rc = 3 (a/b = 0.5) for all the
simulations reported. This corresponds to the value considered by Abrahamson et al.
(1989) and also at the University of Bath, and is slightly smaller than the one studied
in Schuler et al. (1990) and Humphrey & Gor (1993), Rc = 3.32.

2. Mathematical model
The motion is governed by the incompressible Navier–Stokes equations. In a fixed

stationary frame of reference, the dimensionless momentum equations can be written
as:
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The mass conservation equation is:

G
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∂r
+ G

1
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∂Vφ

∂φ
+
∂Vz

∂z
= 0. (2.6)

Re = Ωb2/ν is the rotational Reynolds number, with ν the kinematic viscosity. The
velocity, pressure and time scalings correspond to Ωb, 1

2
ρΩ2b2 and s/2bΩ, respectively.

In the meridional plane, the space variables (r∗, z∗) ∈ [a, b]× [0, s] (see figure 1) have
been normalized into the square [−1, 1]× [−1, 1], a requisite for the use of Chebyshev
polynomials:

r =
2r∗

b− a − Rc, z =
2z∗

s
− 1. (2.7)

The ‘skew-symmetric’ form proposed by Zang (1990) was chosen for the convective
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terms in the momentum equations (2.4) to ensure the conservation of kinetic energy,
a necessary condition for a simulation to be numerically stable in time.

The inner cylinder and the two disks rotate with the same angular velocity Ω, while
the outer cylinder is fixed. However, in order to maintain the spectral accuracy of
the solution, a regularization is introduced for the tangential velocity component at
the discontinuity between the disks and the casing (see Randriamampianina et al.
1997). For the same configuration, but with a large aspect ratio (2 6 G 6 4) for
Taylor–Couette problems, Tavener, Mullin & Cliffe (1991) mentioned that the effects
on the flow patterns away from the corners are negligible if a clearance δ between
the disk and casing is considered which remains sufficiently small (δ/b < 0.02). This
clearance is small in the experiments reported in literature related to the present
studies (δ/b = 0.036 in Abrahamson et al. (1989), and δ/b = 0.026 in Schuler et al.
(1990) and Humphrey & Gor (1993)).

For the axisymmetric regimes (∂/∂φ = 0), a vorticity (ζ)–streamfunction (ψ) formu-
lation with the azimuthal velocity (Vφ) was preferred to the use of primitive variables
(Chaouche, Randriamampianina & Bontoux 1990).

3. Solution method
3.1. Temporal scheme

The time integration used is second-order accurate and is based on a combination
of Adams–Bashforth (AB) and backward differentiation formula (BDF) schemes,
chosen for its good stability properties (Vanel, Peyret & Bontoux 1986). The resulting
AB/BDF scheme is semi-implicit, and for the transport equation of any dependent
variable f(f = Vr, Vφ, Vz for three-dimensional regimes and f = ζ, Vφ for axisymmetric
ones) can be written as:

3fl+1 − 4fl + fl−1

2δt
+ 2N(fl)−N(fl−1) = −A∂p

l+1

∂n
+

(Rc + 1)

GRe
∇2fl+1, (3.1)

where N(f) represents nonlinear terms, n is the normal direction, δt is the timestep
and the superscript l refers to time level (A = 0 for the axisymmetric formulation). For
the three-dimensional solution, the cross-terms in the diffusion part in the (r, φ)-plane
resulting from the use of cylindrical coordinates in (2.1)–(2.2) are treated within N(f),
in order to maintain an overall second-order time accuracy (Le Quéré & Pécheux
1990).

For the initial step, we have taken f−1 = f0. At each timestep, the problem then
reduces to the solution of Helmholtz and Poisson equations.

3.2. Spatial Approximation

A pseudospectral collocation–Chebyshev and Fourier method is implemented. In the
meridional plane (r, z), each dependent variable is expanded in the approximation
space PNM , composed of Chebyshev polynomials of degrees less than or equal to N
and M, respectively, in the r- and z-directions, while Fourier series are introduced in
the azimuthal direction for the three-dimensional solution.

Thus, we have for each dependent variable f:

fNMK(r, φ, z, t) =

N∑
n=0

M∑
m=0

K/2−1∑
k=−K/2

f̂nmk(t)Tn(r)Tm(z) exp (ikφ) (3.2)

where Tn and Tm are Chebyshev polynomials of degrees n and m.
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This approximation is applied at collocation points, where the differential equations
are assumed to be satisfied exactly (Gottlieb & Orszag 1977; Canuto et al. 1987). We
have considered the Chebyshev–Gauss–Lobatto points, ri = cos (iπ/N) for i ∈ [0, N]
and zj = cos (jπ/M) for j ∈ [0,M], and a uniform distribution in the azimuthal
direction: φk = 2kπ/K for k ∈ [0, K].

3.3. Numerical approach

For the axisymmetric regimes, the approach is based on an influence matrix technique
introduced to treat the lack of boundary conditions for the vorticity (Chaouche
et al. 1990). For the three-dimensional solution, the method is the one developed
and described in Hugues (1998) (see also Hugues et al. 1998; Randriamampianina,
Leonardi & Bontoux 1998). It is based on an efficient projection scheme to solve the
coupling between the velocity and the pressure. This algorithm ensures a divergence-
free velocity field at each timestep, maintains the order of accuracy of the time scheme
for each dependent variable and does not require the use of staggered grids (Hugues
& Randriamampianina 1998).

A complete diagonalization of operators yields simple matrix products for the
solution of successive Helmholtz and Poisson equations at each timestep (Halden-
wang et al. 1984). The computations of eigenvalues, eigenvectors and inversion of
corresponding matrices are carried out once during a preprocessing step.

3.4. Computational details

The solution is assumed to be steady when the following criterion is satisfied by the
approximation of the temporal derivative for each dependent variable f:

Err(f) =

∣∣∣∣3fl+1 − 4fl + fl−1

2δt

∣∣∣∣ < ε, (3.3)

where ε = 10−9 (close to machine zero).
For steady regimes, we have used N×M = 64×48 in the radial and axial directions

with a timestep δt = 0.1 for G > 0.3, and N ×M = 80× 48 for 0.1 6 G 6 0.3 with
δt = 0.05. For higher values of the Reynolds number (unsteady regimes), the same
grid is kept and different timesteps are considered within the numerical stability limit.

For the three-dimensional regimes, the same resolution as for the axisymmetric
solutions is used in the meridional plane (r, z), while K = 60 Fourier modes in the
azimuthal direction have been found to be sufficient to represent the wavy flows
in all the cases studied here. Herrero et al. (1999) mentioned that an effective grid
size of nc = 20 nodes per wave cycle is required when performing fixed wavelength
calculations. In the present study, the whole domain was taken into account in all
of the computations carried out, as the number and size of waves change during the
time integration.

4. The axisymmetric regimes
The Navier–Stokes equations admit to a unique solution for given initial conditions,

unlike a stability analysis where different solutions may be observed, particularly
the branches for the pitchfork bifurcation. In the present computations, no initial
perturbation was imposed which could be varied, thus giving rise to a single solution.
For the calculations of the different bifurcations, the strategy was to increase the
value of the Reynolds number by a step of 25 until a significant change occurs in the
flow. For the Hopf bifurcation points, this procedure was carried out until the value
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Figure 2. (a) Regime diagram for the pitchfork bifurcation, (b) detail for G 6 Gc = 0.26.

at which the criterion imposed for steady solution ∂f/∂t < 10−9 (see equation (3.3))
was not satisfied.

4.1. The pitchfork bifurcation

Iglesias & Humphrey (1998) observed a pitchfork bifurcation, characterized by a
symmetry breaking with respect to the inter-disk midplane during axisymmetric steady
computations at 7715 6 Re 6 23150 for G = 0.279 and Rc = 3.32. This asymmetric
solution was obtained after introducing a pertubation of 5% on the angular velocity
of each disk (1.05Ω at the upper disk and 0.95Ω at the lower one). On the other hand,
when relaxing the axisymmetry constraint (∂/∂φ 6= 0), they reported transition to
unsteady three-dimensional flow for 3700 < Re < 4440, characterized by the presence
of foci of intensified axial components of vorticity distributed periodically in the
circumferential direction.

The regime diagram in the (Re, G)-plane obtained for the pitchfork bifurcation is
displayed in figure 2. For 0.6 > G > 0.26, the curve decreases rapidly with increasing
rotation rate, followed by a saturation, corresponding to a very slow variation for
0.25 6 G 6 0.26 (figure 2a). It was found that for G 6 Gc ∼ 0.26, corresponding to
S = s/b = 0.13, the flow first becomes unsteady, for a range of values of Re, before
converging again to another steady state, but showing an asymmetrical structure with
respect to the inter-disk midplane. This is shown in figure 2(b). In their transition
diagram from axisymmetric to unsteady three-dimensional regimes in the plane (Re, S)
for a curvature parameter Rc = 3.32, Herrero et al. (1999) found that there exists a
critical value of S ∼ 0.13 (corresponding to G ∼ 0.28 for this curvature parameter)
above which the flow evolves to a three-dimensional regime with symmetry breaking
(regime III), and below which another three-dimensional regime with shift-and-
reflect symmetry develops (regime II). For the latter, the authors mentioned that the
axisymmetric solutions were already unsteady. Tavener et al. (1991) observed steady
symmetry breaking in a similar configuration, but for larger values of the aspect
ratio (2 6 G 6 4). They emphasized the important role played by the rotating hub in
such geometries on the development of different bifurcations, and showed that this
rotation triggers more rapidly the occurrence of asymmetric solutions compared with
a stationary hub. Depending on the gap ratio, the onset of symmetry breaking may
be smooth and reversible, or sudden with the presence of hysteresis. Such behaviour
applies for the present study, according to the regime diagram displayed in figures
2(a) and 2(b), with smooth and reversible behaviour for G > Gc.
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Figure 3. Convergence history of the azimuthal velocity during the pitchfork bifurcation for the
two aspect ratios. (a) G = 0.6, (b) G = 0.258.

The characteristic jump of the tangential velocity within region II during the
bifurcation to the steady symmetry breaking regime is found to decrease with the
aspect ratio: at G = 0.6, (Vφ/sym − Vφ/asym)/Vφ/sym ∼ 3%, while at the lower gap ratio
G = 0.258 it is about 0.3%. The results suggest that, when decreasing the aspect
ratio, the onset of the symmetry breaking is delayed and eventually does not occur
during the axisymmetric computations. It was not possible to capture this steady
asymmetric structure for G < 0.25; the presence of hysteresis as reported by Tavener
et al. (1991) may explain such behaviour. However, this phenomenon does develop for
three-dimensional computations, and has been observed experimentally (Abrahamson
et al. 1989).

The time history of the approximate temporal derivative of the tangential velocity
component Err(Vφ) is shown in figure 3, at the value of Re at which the flow loses
its symmetry with respect to the inter-disk midplane for G = 0.6 and 0.258. These
curves reflect in more detail the bifurcation related to the jump mentioned above. The
convergence behaviour at the lowest value of Re exhibiting a symmetrical solution
is also reported in figure 3. For G = 0.258, following the exponential decrease,
we remark on the ‘oscillatory’ behaviour of the time derivative which is sustained
for 10 525 < Re < 10 700 (see figure 2b), and is damped for Re = 10 700 until
the criterion in (3.3) is reached. We note particularly the time taken to reach the
final steady solution for the two aspect ratios (t ∼ 3000 for G = 0.6 and t ∼ 104 for
G = 0.258) as well as the duration of the first stage during which the flow keeps
a perfect symmetry with respect to the inter-disk midplane. These results may be
compared with the solution reported by Iglesias & Humphrey (1998) with G = 0.279.

4.2. The Hopf bifurcation

The regime diagram for the Hopf bifurcation is shown in figure 4, giving the critical
value of the gap ratio versus the critical Reynolds number at the transition to
unsteadiness. We note two distinct behaviours, for 0.26 < G 6 0.6 and for 0.1 6
G 6 0.26, which are related to the pitchfork bifurcation (also shown in the same
figure). For G 6 Gc = 0.26, we did not take into account the range of Reynolds
numbers where the flow is already time-dependent, but the computations have been
started from the steady asymmetric solutions. For the two bifurcations, the critical
gap ratio varies approximately with Re−1 for G > Gc, with a steeper slope occurring
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for the lower values of G. The oscillatory motion results from the flapping inward
flow from the casing in region II meeting the detached shear layer (region III) which
acts like a compliant surface (see Schuler et al. 1990; Humphrey & Gor 1993). Such
a phenomenon can be related to the Coanda effect (see Tritton 1988, chapter 12).

5. The three-dimensional regimes
The three-dimensional solution is obtained by integrating the momentum equations,

using the axisymmetric solution as the initial condition into which a finite perturbation
is introduced for the tangential velocity in each azimuthal plane. In the present case,
this initial solution corresponds to:

Vφ,3d = Vφ,axi(1 + α sin (mφ)), (5.1)

where α is the amplitude of the perturbation (fixed at 0.10), and m is an integer.
One major difficulty arising from the numerical studies of wave problems in rotating

systems comes from the intransitivity of the flow, corresponding to the coexistence of
different solutions obtained from the same physical (boundary) conditions (Fowlis &
Hide 1965; Hignett et al. 1985; Abrahamson et al. 1989).

Following the above study of axisymmetric flow regimes, we have considered two
aspect ratios: G = 0.6 and 0.258, for which different behaviour was observed during
the pitchfork bifurcation. A detailed study of the transition from axisymmetric to
three-dimensional solutions is carried out for the larger aspect ratio. For G = 0.258,
we have taken a value of the rotation rate (Re = 10 600) lying within the small
region between the two steady regimes (symmetric and asymmetric with respect to
the inter-disk midplane), at which the flow is unsteady (see figures 2b and 3).

5.1. G = 0.6: transition to the unsteady three-dimensional regime

Transition to the unsteady three-dimensional regime was obtained for 3350 < Re 6
3750. This corresponds to a value of 1005 < ReH ≡ 2ReG/(Rc + 1) 6 1125, which is
far from the value ReH ∼ 2049 found by Iglesias & Humphrey (1998) for Rc = 3.32
and G 6 0.279 (see also Humphrey & Gor 1993). This large discrepancy suggests that
the gap-ratio-related ReH criterion is insufficient to delineate this transition.

During the present computations, the indeterminate regime observed by Abra-
hamson et al. (1989) for G 6 0.2 was not found, but the flow entered directly the
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Re m λII f f′ δII/b δIII/b ΩI/Ω ΩII/Ω ΩIII/Ω

3750 3 π/3 1.39× 10−2 2.476× 10−4

3750 8 π/4 1.695× 10−2 0.145 0.075 0.075 0.697 0.867
4250 3 π/3 1.383× 10−2

5000 3 π/3 1.381× 10−2

104 5 2π/5 1.129× 10−2 6.1× 10−4

Table 1. Summary of three-dimensional results for G = 0.6, with m the initial perturbation, λ the
circumferential wavelength, f the frequency, δ the radial extent.

alternating vortex states regime, characterized by the occurrence of multiple solutions
with the existence of a predominant state. Such a phenomenon can be obtained
from numerical studies by imposing different initial perturbations (see Hignett et al.
1985). We have considered three different values for the wavenumber for the pertur-
bation applied to the axisymmetric solution used to generate the three-dimensional
flow in (5.1): m = 3, 7 and 8. At Re = 3750, with an initial wavenumber m = 3,
the final solution exhibits a temporal quasi-periodic regime, characterized by two
incommensurate frequencies with a fundamental f and a second f′ given in table 1.
With m = 7, a quasi-periodic motion is still obtained. With an initial value of m = 8,
a monoperiodic flow is established, rapidly in comparison with the two previous
solutions where a long chaotic transient is observed. Indeed, all the numerical works
related to the present configuration have reported a monoperiodic behaviour of the
three-dimensional solution at the transition from the axisymmetric solution, but no
quasi-periodic motion (see Iglesias & Humphrey 1998; Herrero et al. 1999).

Similarly to the successive pairing mentioned in Abrahamson et al. (1989) during
their indeterminate regime, we have also observed such significant changes during the
chaotic transient for the ‘m = 3’ solution. The temporal evolution of the modulus
of the dimensionless vorticity at fixed isovalues is displayed in figure 5 at different
(r, φ)-planes, at midheight z/s = 0.50. We consider first the shape of the polygonal
boundary for the inner region, mentioned by Abrahamson et al. (1989) to result from
the presence of the vortices in the outer region. The number of vortices, hence the
number of sides of the polygon, reduces with time during the transient, beginning
at nine and finally stabilizing at six. At the time where the final solution establishes
(figure 5f), the flow structure is well defined by six vortices around a hexagon, giving
a circumferential wavelength λ = π/3 and showing symmetry with respect to φ = π.
The small difference in the size of the vortices results from the second frequency
(two orders of magnitude smaller than the fundamental). Pairing of vortices can be
identified clearly from isocontours during the transient stage until figure 5(e) (note
its time duration t ∼ 1400). Although the geometrical configurations are completely
different, very similar behaviour can be observed from the different phases reported
by van de Konijnenberg et al. (1999) during the establishment of a final wavy solution
in a rotating tank.

5.2. G = 0.6: the ‘m = 8’ solution

Humphrey, Schuler & Webster (1995) found from their numerical studies (with
G = 0.196) that the circumferential wavelength of the vortices for the axial velocity is
twice that of the radial and tangential velocity components at midheight of the cavity.
They found that at the inter-disk midplane, ‘the axial component of vorticity manifests
itself as an even number of circumferentially periodic foci’. However, Abrahamson et
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(a) (b)

(c) (d )

(e) ( f )

Figure 5. Temporal evolution of the distributions of the modulus of the dimensionless vorticity
field in the (r, φ)-plane for G = 0.6 and Re = 3750 at z/s = 0.50 (five levels with 0 6 |ζ| 6 1.12): (a)
t = 327.40; (b) t = 734.40; (c) t = 936.7125; (d) t = 1345.525; (e) t = 1409.3375; (f) t = 1816.2125.
Resolution: N ×M ×K = 64× 48× 60, timestep δt = 0.0625.
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Figure 6. Temporal evolution of the axial Vz and tangential Va ≡ Vφ velocity components at a
monitoring point for the ‘m = 8’ solution: G = 0.6, Re = 3750 (to have the same level on the two
evolutions, the axial velocity component is fictitiously magnified by a factor 20 in the figure).

al. (1989) visualized an odd number of vortices for a value of the gap ratio close to
that studied by Humphrey et al. (1995), and 7 vortices were obtained from the present
computations. Humphrey et al. (1995) also mentioned that the frequency of the
oscillations in the axial direction is twice that of the radial and azimuthal directions,
and that a linear correlation links the frequency to the wavelength (see also Herrero
et al. 1999). Similar behaviour is also observed during the present computations, as
shown by the temporal evolution of the tangential and axial velocity components
at the same monitoring point located in region II (figure 6). The two components
oscillate with the same fundamental frequency f, but the axial component shows
clearly a period doubling with 1

2
fw ≡ 1

2
f. The flow is composed of stable structures,

and this result is related to the spatial behaviour of the axial velocity, emphasizing the
strong nonlinearity of the motion. The perturbation fields of the azimuthal and axial
velocity components, displayed in the (r, φ)-plane in figure 7 at three different heights,
z/s = 0.34, 0.50 and 0.66, are consistent with such findings. The radial and tangential
velocities show identical behaviour. At z/s = 0.5, the azimuthal wavelength of the
radial and tangential velocity components in the outer region is λu = λv = 2π/16,
while for the axial component it corresponds to λw = 2π/8 ≡ 2λu = 2λv . The latter
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VφVz

Vz  (top)Vz

Figure 8. Instantaneous iso-surface of the perturbation of the dimensionless velocity components
for G = 0.6 and Re = 3750 for the ‘m = 8’ solution.

value of λw is independent of the height considered while λu = λv = 2π/8 ≡ λw at the
other heights. The corresponding wavelength in the inner region for the tangential
and axial components remains at the same value for all the heights (2π/8). From
the isovalues of the radial component, a shift-and-reflect symmetry with respect to
the midheight is observed, which generates twice the number of vortices at z/s = 0.5
than at other heights, while the axial component exhibits the antisymmetry required
to ensure mass conservation. The shroud boundary layer contains eight pairs of
elongated contrarotating vortices, especially visible from the axial velocity component
at the midheight (figure 7). Abrahamson et al. (1989) observed that this region has a
more three-dimensional nature than the inner and core regions.

The strong exchanges between the three regions are visible from the iso-surfaces of
the three velocity components, presented in figure 8 from the same viewpoint (with a
view from the top in the (r, φ)-plane of the axial component). It is clearly seen that
the flow is composed of eight vortices. For the radial and tangential components,
these are disposed symmetrically with a shift with respect to the midheight as already
observed from the isocontours, while for the axial component they are formed by
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z/s = 0.34 0.40

0.50

0.660.60

Figure 9. Instantaneous distributions of the modulus of the vorticity at five (r, φ)-planes for the
‘m = 8’ solution: G = 0.6 and Re = 3750 (52 levels with 0 6 |ζ| 6 1.14).
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φ = 0 7π/60 π/5

Figure 10. Instantaneous velocity vectors at different (r, z)-planes for G = 0.6 and Re = 3750 for
the ‘m = 8’ solution (vectors obtained using the axial and radial components only).

eight twisted structures. The instabilities in the radial component are oriented in an
opposite sense to those for the two other components. Such an arrangement explains
the presence of twice the number of vortices at the inter-disk midplane than at other
heights. The elongated toroidal vortices in the shroud boundary layer are particularly
visible on the iso-surface of the axial component. The exchange between the outer and
inner regions appears to develop through spiral arms, as reported by Akhmetov &
Tarasov (1987). The spiral arms form a negative angle with respect to the tangential
direction which varies with radius (see figure 8). This so-called type II instability
has been reported in the literature (with respect to the stability of Ekman layers in
rotating cavities) to result from the effect of centrifugal and Coriolis forces. The spiral
form of these exchanges is due to the different angular velocities between the different
regions, as the shroud is fixed while the hub rotates with the disks.

The distribution of the modulus of the vorticity is displayed in figure 9 at different
(r, φ)-planes to emphasize the nature of the flow regime. An eight-sided boundary
(corresponding to the detached shear layer) separates the inner and outer regions
at symmetrical heights with the exception of the midheight. Eight pairs of large
contrarotating vortices are clearly visible in the outer region, with smaller ones near
the edge of the inner region. At the inter-disk midplane, there are 16 small structures
of differing sizes in the outer region. This results from the ‘pairing’ of the vortices
developing at the other heights for 0.40 6 z/s 6 0.60 as seen in the figure, with a
wavelength λ = 2π/4 for this whole width. As mentioned above, this behaviour is
due to the different arrangement of the velocity components. At other heights, we
observe a wavelength λ = 2π/8, with reflection of structures about the inter-disk
midplane, and with a lag corresponding to 1

2
λ = 1

8
π (see the figure at z/s = 0.34 and

0.66). It is noteworthy that such a shift-and-reflect symmetry is also visible at other
heights, although the value of the wavelength changes (see the figure at z/s = 0.40
and 0.60). These structures are in agreement with the definition of regime II given by
Herrero et al. (1999). The velocity vectors displayed at different (r, z)-planes in figure
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10 emphasize the shift-and-reflect behaviour of the solution. Although the centres of
the two recirculating cross-stream flows in the outer region show a shift with respect
to the inter-disk midplane, a symmetry breaking is not clearly observed. Note the
exchange between the inner and outer regions, following the recirculations mentioned
above. A symmetry reflection with respect to 1

4
π is also obtained for these fields.

5.3. G = 0.6: the effect of rotation rate

The effect of the rotation rate on the solution is studied by increasing the Reynolds
number up to Re = 104, at which the corresponding axisymmetric solution is already
unsteady (see figure 4). As for the computations described above at Re = 3750, the
strategy was to test different initial wavenumbers on the axisymmetric solution leading
to the ‘most stable’ three-dimensional flow.

Characteristics of the results obtained for Re = 4250, 5000 and 104 are summarized
in table 1. An initial perturbation with m = 3 generates a monoperiodic behaviour
for Re = 4250 and 5000, while a quasi-periodic motion establishes for Re = 104

with m = 5. Isocontours of the axial velocity component at different (r, φ)-planes are
shown in figure 11. For the monoperiodic solutions, the final flow structure shows six
vortices of equal size in the (r, φ)-plane, giving a circumferential wavelength λ = 1

3
π,

with a complete symmetry with respect to the inter-disk midplane. Higher rotation
rate results in a more twisted zone at the limit of the inner region, and consequently
more intense exchange between the two regions. The two solutions correspond to the
shift-and-reflect symmetry regimes reported by Herrero et al. (1999), but also with
the presence of a hexagonal zone separating the inner and outer regions. At Re = 104

the flow structure is composed of five vortices of similar sizes, with small differences
resulting from the quasi-periodic nature of the flow. The shift-and-reflect symmetry
no longer appears, and a symmetry breaking starts to develop, as shown by the
velocity vectors at different (r, z)-planes (figure 12). The findings are consistent with
those of Herrero et al. (1999) when increasing the rotation rate. The inner region is no
longer in solid-body rotation, with the presence of small vortices, in agreement with
the observations of Abrahamson et al. (1989). The structures displayed at two planes
separated by π, respectively, at φ = 3π/10 and 13π/10 show no hint of symmetry.

5.4. Small gap ratio: G = 0.258

The rotation rate Re = 10 600 is chosen here, for which the corresponding axisymmet-
ric solution is already unsteady (see figures 2b and 3). An initial wavenumber m = 3
in (5.1) triggers a quasi-periodic solution. Different flow structures develop compared
with those observed at the larger gap ratio G = 0.6. The flow structure contains six
vortices, as seen from the isocontours of the modulus of the dimensionless vorticity at
different (r, φ)-planes (figure 13) displayed at the final time considered, more visible
from the spiral arms in the inner region. However, a spatial periodicity of λ = 2π/3
is observed, instead of π/3, resulting from the quasi-periodic nature of the flow as
mentioned above.

The shift-and-reflect symmetry expected for this case according to the regime
diagram produced by Herrero et al. (1999) is not obtained, as shown by the isovalues
of vorticity at z/s = 0.34 and 0.66 (figure 13). This discrepancy may result from the
different values of the curvature parameter, as well as from differences in the numerical
approaches considered. The outer region is shifted towards the boundary layer on
the casing, and strong exchanges with the inner region develop in the upper half of
the cavity via spiral arms. Each spiral arm is indeed associated with a vortex located
in the outer region. Elongated vortices develop in the inner region, located near the
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Figure 11. Effect of the rotation rate on the instantaneous isocontours of the dimensionless axial velocity component at two (r, φ)-planes (52 levels
with −0.159 58 6 Vz 6 0.159 58 for Re = 4250, −0.163 29 6 Vz 6 0.163 29 for Re = 5000 and −0.177 492 6 Vz 6 0.180 504 for Re = 104).
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φ = 3π/10 7π/10

9π/10 13π/10

Figure 12. Velocity vectors at different (r, z)-planes for G = 0.6 and Re = 104 with an initial
perturbation m = 5 (vectors obtained using the axial and radial components only).

boundary between the outer and inner regions. However, the casing boundary layer
shows a more axisymmetrical structure, and does not exhibit the toroidal structure
observed for G = 0.6 at Re = 3750. The flow structure in the (r, z)-planes presents
a more pronounced symmetry breaking with respect to the inter-disk midplane than
that obtained from axisymmetric computations, with a disctinct primary dominant
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Figure 13. Distributions of the modulus of the dimensionless vorticity field at different (r, φ)-planes for G = 0.258 and Re = 10 600
(32 levels with 0 6 |ζ| 6 1.2).



Spatio-temporal behaviour in an enclosed corotating disk pair 59

φ = π/15 π/3 8π/15

Figure 14. Instantaneous velocity vectors at different (r, z)-planes for G = 0.258 at Re = 10 600.

vortex (figure 14). The shift of the centre of this primary cell at different (r, z)-planes
is associated with the presence of a tertiary cell located just below it, in the region
of the flow responsible for the unsteadiness. From these observations, it is concluded
that the present solution belongs to regime III as reported by Herrero et al. (1999),
although the polygonal shape of region III is not clearly distinguishable.

6. Discussion
The three-dimensional results are summarized in table 1 for G = 0.6 and in table 2

for G = 0.258.
Owen & Rogers (1995) described the occurrence of Rankine vortex behaviour in

some rotating cavity flows, characterized by the following variation of Vφ/Ωr with
x−2 = (r/b)−2:

Vφ/Ωr = Ax−2 + B, (6.1)

where A and B are two constants. Gan et al. (1996) identified this behaviour in their
ECDP measurements for G = 0.6 at large values of Re. The variation of the ensemble-
averaged normalized tangential velocity Vφ/Ωr for the two aspect ratios studied here
is shown in this form in figure 15. Time-averaged results for the axisymmetric solution
are also shown. These results show the different characteristics of each region, with
a larger extent of the inner region and a smaller outer region for the larger aspect
ratio, as described above. Rankine vortex behaviour is clearly observed in the outer
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Figure 15. Variation of the normalized tangential velocity component Vφ/Ωr with x−2 = (r/b)−2

at z/s = 0.80: (a) G = 0.6 at Re = 3750 (m = 8); (b) G = 0.258 at Re = 10 600 (m = 3). —,
three-dimensional; · · ·, axisymmetric.

m λII f f′ δII/b δIII/b ΩI/Ω ΩII/Ω ΩIII/Ω

3 2π/3 1.1324× 10−2 7.72× 10−4 0.12 0.03 0.22 0.6455 0.916

Table 2. Summary of three-dimensional results for G = 0.258 and Re = 10 600, with m the initial
perturbation, λ the circumferential wavelength, f the frequency, δ the radial extent.

region, with a value of B ∼ 0 for the axisymmetric solutions (see also Lewis et al.
1998), while B ∼ −1 for the three-dimensional solutions.

The inner region behaves as a solid body, while the boundary layer along the
casing has a different angular velocity (ΩI/Ω) and the core region an angular velocity
(ΩII/Ω) depending on the gap ratio and rotation rate considered (see tables 1 and 2).
Humphrey et al. (1995) proposed a theoretical value ΩII/Ω = 0.5 at higher rotation
rates for a gap ratio G = 0.279. Abrahamson et al. (1989) reported a larger value of
about 0.8 from their experiments.

For region III, we obtained (ΩIII/Ω) = 0.867 for G = 0.6 at Re = 3750 (table
1). This is very close to the theoretical value predicted from the relation mentioned
in Akhmetov & Tarasov (1987) for plane flow with polygonal regions of constant
vorticity 2Ω:

ΩIII/Ω = (k − 1)/k, (6.2)

giving (ΩIII/Ω) = 0.875, where k is the number of corners of the polygon.
Humphrey & Gor (1993) provided an empirical variation for the radial extent and

thickness of the detached shear layer:

rIII/b = 21.7(ReH )−1.03 + 0.72, (6.3)

and

δIII/b ∼ (2Re)−1/2, (6.4)

where ReH = Ωbs/ν. Use of the relation (6.3) for G = 0.6 at the corresponding ReH =
1125 leads to rIII/b = 0.7356, which is close to the theoretical value 0.74 reported by
Humphrey & Gor (1993) but smaller than the computed value: 0.835 > rIII/b > 0.76.
For the thickness, we obtain δIII/b = 0.075, which is close to the value measured by
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Figure 16. Spectral analysis of the spatial variation of the normalized tangential velocity component
Vφ/Ωr with wavenumber µ in the different regions of the flow: (a) G = 0.6 at Re = 3750 (m = 8);
(b) G = 0.258 at Re = 10 600 (m = 3).

Humphrey & Gor (1993) at Re = 4065 for G = 0.293, while the theoretical value from
(6.4) gives δIII/b = 0.107. These discrepancies may result mainly from the difference
on the curvature parameters considered: Rc = 3.32 in Humphrey & Gor (1993) while
in the present configuration Rc = 3. Indeed, this parameter plays an important role
on the flow behaviour, particularly on the transition to unsteadiness (see Daube et
al. 1994).

The tangential velocity also possesses a spatial periodic nature in the (r, φ)-plane.
The spectral analysis of this spatial variation of the tangential velocity with wavenum-
ber µ = 2π/λ is reported in figure 16 for the different regions of the flow. Note the
high density of the harmonics in region II (the outer region), showing the strong
nonlinearity of the flow for both gap ratios. For G = 0.6, a wavelength of 2π/8 is ob-
tained for all the regions of the flow, as was observed directly from the flow structure.
For G = 0.258, there is a spatial period doubling, with a density similar to the funda-
mental one in region III. The latter indicates that a wavelength λ = 2π/3 dominates
for this configuration, although λ = 2π/6 is present within the flow. This behaviour
emphasizes the complexity of the quasi-periodic motion of the flow mentioned above.

7. Torque coefficient Cm
The variation of the disk moment coefficient Cm versus rotational Reynolds number

Re is displayed in figure 17 for G = 0.6. The value taken for time-dependent regimes
has been obtained from a time-averaged velocity.

1
2
ρΩ2b5Cm =

∫ 2π

0

∫ b

a

µ
∂Vφ

∂z

∣∣∣∣
z=0

r dA+

∫ 2π

0

∫ b

a

µ
∂Vφ

∂z

∣∣∣∣
z=s

r dA, (7.1)

where A is the area. The three-dimensional results give the same variation for the
torque coefficient as the axisymmetric solutions, with Cm ∝ Re−n where n = 0.63.
Herrero et al. (1995) obtained a ‘Reynolds number power dependency changing
from −0.67 to −0.53 with increasing Re’ for an aspect ratio G = 0.196, with good
agreement between three-dimensional and axisymmetric predictions. They observed
that this value of n is larger than the theoretical value, n = 0.5 for an infinite single
rotating disk, owing to the different nature of the flow.
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Figure 17. Variation of the disk torque coefficient with Reynolds number Re for the
�, axisymmetric and +, three-dimensional solutions: G = 0.6.

8. Conclusions
A numerical investigation of the spatio-temporal behaviour of the flow in an

enclosed corotating disk pair has been performed with a high-resolution spectral
method. Axisymmetric and three-dimensional flow regimes have been analysed, and
the different bifurcations occurring in such a geometry have been delineated. The
occurrence of unsteady motion has been shown for a range of rotation rates and
for values of the aspect ratio less than a critical value Gc ∼ 0.26, similar to the
findings of Tavener et al. (1991) for Taylor–Couette problems. This critical limit was
found by Herrero et al. (1999) to correspond to the separation between two classes of
three-dimensional regimes, with symmetry breaking at higher values of G and shift-
and-reflect symmetry at lower values. For the transition to three-dimensional regimes,
the ‘alternating vortex states regime’ observed experimentally by Abrahamson et al.
(1989) is obtained for the largest gap ratio considered (G = 0.6). Large vortices in
the core region rotate with an angular velocity ΩII = 0.697Ω, with a wavelength
λ = 2π/8, where Ω is the angular velocity of the disks. Multiple solutions develop
during the transition, with the presence of quasi-periodic motion resulting from
vortex pairings and a predominant monoperiodic state. The flow is characterized by
the ‘shift-and-reflect’ symmetry reported by Herrero et al. (1999) with a well-defined
polygonal shape of the detached shear layer. Increasing rotation rate leads to a
decrease of the number of vortices in the core region and a bifurcation to ‘symmetry
breaking’ structure, in agreement with previous works. Exchanges of fluid between
the core region and the inner region occur through spiral arms, owing to the different
behaviour of the flow in these regions (see Akhmetov & Tarasov 1987). The variation
of torque coefficient as a function of the rotation rate is the same for both the
axisymmetric and three-dimensional solutions.

For G = 0.258, starting from an unsteady monoperiodic axisymmetric solution,
the three-dimensional flow exhibits clearly symmetry breaking with respect to the
inter-disk midplane. The vortices in the core region rotate with a drift ΩII = 0.6455Ω,
which comes close to the theoretical value 0.5 found by Humphrey et al. (1995) for
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G = 0.279 at higher rotation rates , and a wavelength λ = 2π/3 owing to its temporal
quasi-periodic nature. Such findings are consistent with experimental observations
made by Abrahamson et al. (1989). Discrepancies with the predictions of Herrero
et al. (1999) and the data from Humphrey & Gor (1993) may be explained by the
difference on the curvature parameters considered.

Computations are now being carried out at higher values of the rotation rate in
order to match values in experimental studies carried out at the University of Bath.

These computations have been performed on the CRAY C-90 and T3E of the
IDRIS (CNRS, Orsay, France). The authors wish to acknowledge the fruitful discus-
sions with Professor J. M. Owen (Bath, UK) and Dr R. J. Lingwood (Cambridge, UK)
during the course of this article. AR would like to acknowledge Dr S. Hugues, Dr
I. Raspo (IRPHE, Marseille, France), Dr O. Louchart (New South Wales, Australia)
and Dr J. Ouazzani (ARCOFLUID, Aix-en-Provence, France) for their contribution
to the development of the numerical code, and also Dr R. Peyret (Nice, France)
and Professor R. L. Sani (Boulder, Colorado, USA). The authors are grateful to the
CNRS and the Royal Society for their financial support.
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la transition à l’instationnarité des écoulements inter-disques. LIMSI Rep. 94-10.

Fowlis, W. W. & Hide, R. 1965 Thermal convection in a rotating annulus of liquid: effect of viscosity
on the transition between axisymmetric and non-axisymmetric flow regimes. J. Atmos. Sci. 22,
541–558.

Gan, X., Mirzaee, I., Owen, J. M., Rees, D. A. S. & Wilson, M. 1996 Flow in a rotating cavity
with a peripheral inlet and outlet of cooling air. In ASME Intl Gas Turbine Aeroengine Cong.,
Birmingham paper 96-GT-309.

Gottlieb, D. & Orszag, S. A. 1977 Numerical Analysis of Spectral Methods: Theory and Applications.
CBMS Regional Conf. Series in Appl. Math., SIAM.

Haldenwang, P., Labrosse, G., Abboudi, S. & Deville, M. 1984 Chebyshev 3-D spectral and 2-D
pseudospectral solvers for the Helmholtz equation. J. Comput. Phys. 55, 115–128.

Herrero, J., Giralt, F. & Humphrey, J. A. C. 1995 Numerical calculation of unsteady 3-D flow
between a pair of corotating disks in a fixed enclosure. In ASME Fluids Engineering Division,
IMECE, vol. 234, pp. 277–285.

Herrero, J., Giralt, F. & Humphrey, J. A. C. 1999 Influence of the geometry on the structure of
the flow between a pair of corotating disks. Phys. Fluids 11, 88–96.

Hignett, P., White, A. A., Carter, R. D., Jackson, W. D. N. & Small, R. M. 1985 A comparison
of laboratory measurements and numerical simulations of baroclinic wave flows in a rotating
cylindrical annulus. Q. J. R. Met. Soc. 111, 131–154.
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